Dosimetric analysis of radiation-induced brainstem necrosis for nasopharyngeal carcinoma treated with IMRT

Author:

Fan Xigang,Huang Yecai,Xu Peng,Min Yanmei,Li Jie,Feng Mei,Xu Guohui,Lang Jinyi

Abstract

Abstract Background Radiation-induced brainstem necrosis (RIBN) is a late life-threatening complication that can appear after treatment in patients with nasopharyngeal carcinoma (NPC). However, the relationship between RIBN and radiation dose is not still well-defined. Methods During January 2013 and December 2017, a total of 1063 patients with NPC were treated at Sichuan cancer hospital with IMRT. A total of 479 patients were eligible for dosimetric analysis. Dosimetric parameters of the RIBN, Dmax(the maximum dose), D0.1c (maximum average dose delivered to a 0.1-cc volume), D1cc, D2cc, D3cc, D5cc, D10cc and Dmean (mean does) were evaluated and recorded. ROC curve was used to analyze the area under curve (AUC) and cutoff points. Logistic regression for screening dose-volume parameter and logistic dose response model were used to predict the incidence of brainstem necrosis. Results Among the 479 patients with NPC, 6 patients were diagnosed with RIBN, the incidence of RIBN was 1.25% (6/479), and the median time to RIBN after treatment was 28.5 months (range 18–48 months). The dose of the brainstem in patients with RIBN were higher than that in patients without necrosis. ROC curve showed that the area under the curve (AUC) of Dmax was the largest (0.987). Moreover, logistic stepwise regression indicated that Dmax was the most important dose factor. The RIBN incidence at 5% over 5 years (TD5/5) and 50% incidence over 5 years (TD50/5) was 69.59 Gy and76.45 Gy, respectively. Conclusions Brainstem necrosis is associated with high dose irritation. Dmax is the most significant predictive dosimetric factor for RIBN. Dmax of brainstem should be considered as the dose limitation parameter. We suggest that the limitation dose for brainstem was Dmax < 69.59 Gy.

Funder

Applied Technology Research and Development Fund Project Plan of Deyang City 2016

Cadre Health Research Project of Sichuan Province

Science and Technology Innovation R&D Project of Chengdu Science and Technology Bureau

Technological innovation and entrepreneurial talents seedling projects of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3