Integrated profiling identifies CACNG3 as a prognostic biomarker for patients with glioma

Author:

Shan Enfang,Cao Yi-nan,Zhang Yang,Chen Wen,Ren Xurui,Zhu Shanjie,Xi Xueru,Mu Shuai,Ma Mian,Zhi Tongle,Li Xianwen

Abstract

AbstractGliomas are the most common malignant primary brain tumors in adults with poor prognoses. The purpose of this study is to explore CACNG3 as a prognostic factor that is closely related to the progression and survival outcome of gliomas and to provide a potential new molecular target for the diagnosis and treatment of glioma patients. CACNG3 expression and related clinical data were collected from three major databases of The Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO). The CGGA dataset was used as a training set, and TCGA and GEO datasets obtained from the GEO database were used for validation. CACNG3 was expressed at low levels in the tumor group, and the overall survival (OS) in patients with low CACNG3 expression is shorter. Furthermore, CACNG3 expression was negatively associated with glioma grades, which was confirmed in the IHC results of clinical samples. The expression level of CACNG3 in the IDH1 wide-type group, 1p/19q non-codel group, and mesenchymal subtype group was significantly reduced, and the results showed that CACNG3 could serve as a biomarker for the mesenchymal molecular subtype. In addition, the univariate and multivariate analysis verified the prognostic value of CACNG3 in predicting the OS of gliomas of all grades. The results of functional annotation and pathway enrichment analysis of differently expressed genes(DEGs), showed that CACNG3 might affect the development of glioma by interfering with synaptic transmission. Moreover, temozolomide (TMZ), commonly used in the treatment of glioma, increased CACNG3 expression in a dose and time-dependent manner. Therefore, CACNG3 plays a vital role in the occurrence and development of gliomas and can serve as a potential biomarker for targeted therapy and further investigation in the future.

Funder

the Key Discipline Program of Jiangsu Province

Jiangsu Commission of Health

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3