AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer

Author:

Iida Mari,McDaniel Nellie K.,Kostecki Kourtney L.,Welke Noah B.,Kranjac Carlene A.,Liu Peng,Longhurst Colin,Bruce Justine Y.,Hong Seungpyo,Salgia Ravi,Wheeler Deric L.

Abstract

Abstract Background The receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR) is overexpressed and an important therapeutic target in Head and Neck cancer (HNC). Cetuximab is currently the only EGFR-targeting agent approved by the FDA for treatment of HNC; however, intrinsic and acquired resistance to cetuximab is a major problem in the clinic. Our lab previously reported that AXL leads to cetuximab resistance via activation of HER3. In this study, we investigate the connection between AXL, HER3, and neuregulin1 (NRG1) gene expression with a focus on understanding how their interdependent signaling promotes resistance to cetuximab in HNC. Methods Plasmid or siRNA transfections and cell-based assays were conducted to test cetuximab sensitivity. Quantitative PCR and immunoblot analysis were used to analyze gene and protein expression levels. Seven HNC patient-derived xenografts (PDXs) were evaluated for protein expression levels. Results We found that HER3 expression was necessary but not sufficient for cetuximab resistance without AXL expression. Our results demonstrated that addition of the HER3 ligand NRG1 to cetuximab-sensitive HNC cells leads to cetuximab resistance. Further, AXL-overexpressing cells regulate NRG1 at the level of transcription, thereby promoting cetuximab resistance. Immunoblot analysis revealed that NRG1 expression was relatively high in cetuximab-resistant HNC PDXs compared to cetuximab-sensitive HNC PDXs. Finally, genetic inhibition of NRG1 resensitized AXL-overexpressing cells to cetuximab. Conclusions The results of this study indicate that AXL may signal through HER3 via NRG1 to promote cetuximab resistance and that targeting of NRG1 could have significant clinical implications for HNC therapeutic approaches.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3