USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway

Author:

Diao Wenjing,Guo Qisang,Zhu Caiying,Song Yu,Feng Hua,Cao Yuankui,Du Ming,Chen HuifenORCID

Abstract

Abstract Background The deubiquitinating (DUB) enzyme ubiquitin-specific protease 18 (USP18), also known as UBP43, is an ubiquitin-specific protease linked to several human malignancies. However, USP18’s underlying function in human cervical cancer remains unclear. In the current study, we aimed to analyse the role of USP18 and its signalling pathways in cervical cancer. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to analyse USP18 levels in cervical cancer and matched to adjacent normal tissues. Moreover, RNA interference (RNAi) and lentiviral-mediated vector transfections were performed to silence and overexpress USP18, respectively, in cervical cancer cells. Further, Cell Counting Kit-8 (CCK-8) and Annexin V/PI staining assays were used to assess its biological function in cell proliferation and apoptosis, respectively. A xenograft model was used to examine USP18’s function in vivo. Results The present findings demonstrated that USP18 was overexpressed in cervical cancer specimens and cell lines. Silencing USP18 in SiHa and Caski cervical cancer cell lines inhibited cell proliferation, induced apoptosis, and promoted cleaved caspase-3 expression. In contrast, USP18 overexpression showed the opposite effects in human HcerEpic cells. A Gene Set Enrichment Analysis revealed that USP18 was enriched in the PI3K/AKT signalling pathway in cervical cancer. Hence, the PI3K/AKT inhibitor LY294002 was used to determine the relationship between USP18 and AKT in cervical cancer cells. Importantly, LY294002 significantly abolished the effects of USP18 overexpression in cervical cancer cells. In vivo, USP18 silencing inhibited human cervical cancer cells’ tumorigenicity. Conclusions The current study indicates that USP18 is an oncogenic gene in cervical cancer. Our findings not only deepened the understanding of USP18’s biological function in cervical cancer pathogenesis, but we also provided novel insight for cervical cancer therapy. Trial registration Retrospectively registered.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3