Machine learning to predict occult metastatic lymph nodes along the recurrent laryngeal nerves in thoracic esophageal squamous cell carcinoma

Author:

Zhang Yiliang,Zhang Longfu,Li Bin,Ye Ting,Zhang Yang,Yu Yongfu,Ma Yuan,Sun Yihua,Xiang Jiaqing,Li YikeORCID,Chen Haiquan

Abstract

Abstract Purpose Esophageal squamous cell carcinoma (ESCC) metastasizes in an unpredictable fashion to adjacent lymph nodes, including those along the recurrent laryngeal nerves (RLNs). This study is to apply machine learning (ML) for prediction of RLN node metastasis in ESCC. Methods The dataset contained 3352 surgically treated ESCC patients whose RLN lymph nodes were removed and pathologically evaluated. Using their baseline and pathological features, ML models were established to predict RLN node metastasis on each side with or without the node status of the contralateral side. Models were trained to achieve at least 90% negative predictive value (NPV) in fivefold cross-validation. The importance of each feature was measured by the permutation score. Results Tumor metastases were found in 17.0% RLN lymph nodes on the right and 10.8% on the left. In both tasks, the performance of each model was comparable, with a mean area under the curve ranging from 0.731 to 0.739 (without contralateral RLN node status) and from 0.744 to 0.748 (with contralateral status). All models showed approximately 90% NPV scores, suggesting proper generalizability. The pathology status of chest paraesophgeal nodes and tumor depth had the highest impacts on the risk of RLN node metastasis in both models. Conclusion This study demonstrated the feasibility of ML in predicting RLN node metastasis in ESCC. These models may potentially be used intraoperatively to spare RLN node dissection in low-risk patients, thereby minimizing adverse events associated with RLN injuries.

Funder

Shanghai Pujiang Program

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Project

Shanghai Municipal Science and Technology Major Project

Shanghai Municipal Key Clinical Specialty Project

Pilot Project of Fudan University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3