Molecular profiling of human non-small cell lung cancer by single-cell RNA-seq

Author:

Li Qingqing,Wang Rui,Yang Zhenlin,Li Wen,Yang Jingwei,Wang Zhijie,Bai Hua,Cui Yueli,Tian Yanhua,Wu Zixin,Guo Yuqing,Xu Jiachen,Wen Lu,He Jie,Tang Fuchou,Wang Jie

Abstract

AbstractBackgroundLung cancer, one of the most common malignant tumors, exhibits high inter- and intra-tumor heterogeneity which contributes significantly to treatment resistance and failure. Single-cell RNA sequencing (scRNA-seq) has been widely used to dissect the cellular composition and characterize the molecular properties of cancer cells and their tumor microenvironment in lung cancer. However, the transcriptomic heterogeneity among various cancer cells in non-small cell lung cancer (NSCLC) warrants further illustration.MethodsTo comprehensively analyze the molecular heterogeneity of NSCLC, we performed high-precision single-cell RNA-seq analyses on 7364 individual cells from tumor tissues and matched normal tissues from 19 primary lung cancer patients and 1 pulmonary chondroid hamartoma patient.ResultsIn 6 of 16 patients sequenced, we identified a significant proportion of cancer cells simultaneously expressing classical marker genes for two or even three histologic subtypes of NSCLC—adenocarcinoma (ADC), squamous cell carcinoma (SCC), and neuroendocrine tumor (NET) in the same individual cell, which we defined as mixed-lineage tumor cells; this was verified by both co-immunostaining and RNA in situ hybridization. These data suggest that mixed-lineage tumor cells are highly plastic with mixed features of different types of NSCLC. Both copy number variation (CNV) patterns and mitochondrial mutations clearly showed that the mixed-lineage and single-lineage tumor cells from the same patient had common tumor ancestors rather than different origins. Moreover, we revealed that patients with high mixed-lineage features of different cancer subtypes had worse survival than patients with low mixed-lineage features, indicating that mixed-lineage tumor features were associated with poorer prognosis. In addition, gene signatures specific to mixed-lineage tumor cells were identified, includingAKR1B1. Gene knockdown and small molecule inhibition ofAKR1B1can significantly decrease cell proliferation and promote cell apoptosis, suggesting thatAKR1B1plays an important role in tumorigenesis and can serve as a candidate target for tumor therapy of NSCLC patients with mixed-lineage tumor features.ConclusionsIn summary, our work provides novel insights into the tumor heterogeneity of NSCLC in terms of the identification of prevalent mixed-lineage subpopulations of cancer cells with combined signatures of SCC, ADC, and NET and offers clues for potential treatment strategies in these patients.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3