Computational quantification and characterization of independently evolving cellular subpopulations within tumors is critical to inhibit anti-cancer therapy resistance

Author:

Alkhatib Heba,Rubinstein Ariel M.,Vasudevan Swetha,Flashner-Abramson Efrat,Stefansky Shira,Chowdhury Sangita Roy,Oguche Solomon,Peretz-Yablonsky Tamar,Granit Avital,Granot Zvi,Ben-Porath Ittai,Sheva Kim,Feldman Jon,Cohen Noa E.,Meirovitz Amichay,Kravchenko-Balasha NatalyORCID

Abstract

Abstract Background Drug resistance continues to be a major limiting factor across diverse anti-cancer therapies. Contributing to the complexity of this challenge is cancer plasticity, in which one cancer subtype switches to another in response to treatment, for example, triple-negative breast cancer (TNBC) to Her2-positive breast cancer. For optimal treatment outcomes, accurate tumor diagnosis and subsequent therapeutic decisions are vital. This study assessed a novel approach to characterize treatment-induced evolutionary changes of distinct tumor cell subpopulations to identify and therapeutically exploit anticancer drug resistance. Methods In this research, an information-theoretic single-cell quantification strategy was developed to provide a high-resolution and individualized assessment of tumor composition for a customized treatment approach. Briefly, this single-cell quantification strategy computes cell barcodes based on at least 100,000 tumor cells from each experiment and reveals a cell-specific signaling signature (CSSS) composed of a set of ongoing processes in each cell. Results Using these CSSS-based barcodes, distinct subpopulations evolving within the tumor in response to an outside influence, like anticancer treatments, were revealed and mapped. Barcodes were further applied to assign targeted drug combinations to each individual tumor to optimize tumor response to therapy. The strategy was validated using TNBC models and patient-derived tumors known to switch phenotypes in response to radiotherapy (RT). Conclusions We show that a barcode-guided targeted drug cocktail significantly enhances tumor response to RT and prevents regrowth of once-resistant tumors. The strategy presented herein shows promise in preventing cancer treatment resistance, with significant applicability in clinical use.

Funder

Israel Science Foundation

National Cancer Institute NIH

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3