Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease

Author:

Dueñas Rey Alfredo,del Pozo Valero Marta,Bouckaert Manon,Wood Katherine A,Van den Broeck Filip,Daich Varela Malena,Thomas Huw B,Van Heetvelde Mattias,De Bruyne Marieke,Van de Sompele Stijn,Bauwens Miriam,Lenaerts Hanne,Mahieu Quinten,Josifova Dragana,Rivolta Carlo,O’Keefe Raymond T,Ellingford Jamie,Webster Andrew R,Arno Gavin,Ayuso Carmen,De Zaeytijd Julie,Leroy Bart P,De Baere Elfride,Coppieters FraukeORCID,

Abstract

Abstract Background 5’ untranslated regions (5’UTRs) are essential modulators of protein translation. Predicting the impact of 5’UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5’UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). Methods We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5’UTRs by different whole exome sequencing (WES) kits. The selected 5’UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5’UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. Results Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5’UTR compared to that of their canonical isoform. Depending on the probe design, 3–20% of IRD genes have 5’UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5’UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. Conclusions This study demonstrates the importance of 5’UTR variants implicated in IRDs and provides a systematic approach for 5’UTR annotation and validation that is applicable to other inherited diseases.

Funder

Bijzonder Onderzoeksfonds UGent

H2020 Marie Skłodowska-Curie Actions

Universitair Ziekenhuis Gent

Foundation Fighting Blindness

European Joint Programme on Rare Disease

Fundación Alfonso Martín Escudero

Instituto de Salud Carlos III

University Chair UAM-IIS-FJD of Genomic Medicine

Fight for Sight UK

National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3