Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy

Author:

Reustle Anna,Di Marco Moreno,Meyerhoff Carolin,Nelde Annika,Walz Juliane S.,Winter Stefan,Kandabarau Siahei,Büttner Florian,Haag Mathias,Backert Linus,Kowalewski Daniel J.,Rausch Steffen,Hennenlotter Jörg,Stühler Viktoria,Scharpf Marcus,Fend Falko,Stenzl Arnulf,Rammensee Hans-Georg,Bedke Jens,Stevanović Stefan,Schwab Matthias,Schaeffeler Elke

Abstract

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of renal cancer. With currently available therapies, cure of advanced and metastatic ccRCC is achieved only in rare cases. Here, we developed a workflow integrating different -omics technologies to identify ccRCC-specific HLA-presented peptides as potential drug targets for ccRCC immunotherapy. Methods We analyzed HLA-presented peptides by MS-based ligandomics of 55 ccRCC tumors (cohort 1), paired non-tumor renal tissues, and 158 benign tissues from other organs. Pathways enriched in ccRCC compared to its cell type of origin were identified by transcriptome and gene set enrichment analyses in 51 tumor tissues of the same cohort. To retrieve a list of candidate targets with involvement in ccRCC pathogenesis, ccRCC-specific pathway genes were intersected with the source genes of tumor-exclusive peptides. The candidates were validated in an independent cohort from The Cancer Genome Atlas (TCGA KIRC, n = 452). DNA methylation (TCGA KIRC, n = 273), somatic mutations (TCGA KIRC, n = 392), and gene ontology (GO) and correlations with tumor metabolites (cohort 1, n = 30) and immune-oncological markers (cohort 1, n = 37) were analyzed to characterize regulatory and functional involvements. CD8+ T cell priming assays were used to identify immunogenic peptides. The candidate gene EGLN3 was functionally investigated in cell culture. Results A total of 34,226 HLA class I- and 19,325 class II-presented peptides were identified in ccRCC tissue, of which 443 class I and 203 class II peptides were ccRCC-specific and presented in ≥ 3 tumors. One hundred eighty-five of the 499 corresponding source genes were involved in pathways activated by ccRCC tumors. After validation in the independent cohort from TCGA, 113 final candidate genes remained. Candidates were involved in extracellular matrix organization, hypoxic signaling, immune processes, and others. Nine of the 12 peptides assessed by immunogenicity analysis were able to activate naïve CD8+ T cells, including peptides derived from EGLN3. Functional analysis of EGLN3 revealed possible tumor-promoting functions. Conclusions Integration of HLA ligandomics, transcriptomics, genetic, and epigenetic data leads to the identification of novel functionally relevant therapeutic targets for ccRCC immunotherapy. Validation of the identified targets is recommended to expand the treatment landscape of ccRCC.

Funder

Robert Bosch Stiftung

Deutsche Forschungsgemeinschaft

ICEPHA Graduate School

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3