Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer

Author:

Tzeng Alice,Sangwan Naseer,Jia Margaret,Liu Chin-Chih,Keslar Karen S.,Downs-Kelly Erinn,Fairchild Robert L.,Al-Hilli Zahraa,Grobmyer Stephen R.,Eng CharisORCID

Abstract

AbstractBackgroundCurrently, over half of breast cancer cases are unrelated to known risk factors, highlighting the importance of discovering other cancer-promoting factors. Since crosstalk between gut microbes and host immunity contributes to many diseases, we hypothesized that similar interactions could occur between the recently described breast microbiome and local immune responses to influence breast cancer pathogenesis.MethodsUsing 16S rRNA gene sequencing, we characterized the microbiome of human breast tissue in a total of 221 patients with breast cancer, 18 individuals predisposed to breast cancer, and 69 controls. We performed bioinformatic analyses using a DADA2-based pipeline and applied linear models with White’stor Kruskal–WallisH-tests with Benjamini–Hochberg multiple testing correction to identify taxonomic groups associated with prognostic clinicopathologic features. We then used network analysis based on Spearman coefficients to correlate specific bacterial taxa with immunological data from NanoString gene expression and 65-plex cytokine assays.ResultsMultiple bacterial genera exhibited significant differences in relative abundance when stratifying by breast tissue type (tumor, tumor adjacent normal, high-risk, healthy control), cancer stage, grade, histologic subtype, receptor status, lymphovascular invasion, or node-positive status, even after adjusting for confounding variables. Microbiome–immune networks within the breast tended to be bacteria-centric, with sparse structure in tumors and more interconnected structure in benign tissues. Notably,Anaerococcus,Caulobacter, andStreptococcus, which were major bacterial hubs in benign tissue networks, were absent from cancer-associated tissue networks. In addition,PropionibacteriumandStaphylococcus, which were depleted in tumors, showed negative associations with oncogenic immune features;StreptococcusandPropionibacteriumalso correlated positively with T-cell activation-related genes.ConclusionsThis study, the largest to date comparing healthy versus cancer-associated breast microbiomes using fresh-frozen surgical specimens and immune correlates, provides insight into microbial profiles that correspond with prognostic clinicopathologic features in breast cancer. It additionally presents evidence for local microbial–immune interplay in breast cancer that merits further investigation and has preventative, diagnostic, and therapeutic potential.

Funder

Gray Foundation Team Science Award

VeloSano Pilot Program

Randy and Ken Kendrick

James and Ruth Levitan Cancer Research Award

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3