DrABC: deep learning accurately predicts germline pathogenic mutation status in breast cancer patients based on phenotype data

Author:

Liu Jiaqi,Zhao Hengqiang,Zheng Yu,Dong Lin,Zhao Sen,Huang Yukuan,Huang Shengkai,Qian Tianyi,Zou Jiali,Liu Shu,Li Jun,Yan Zihui,Li Yalun,Zhang Shuo,Huang Xin,Wang Wenyan,Li Yiqun,Wang Jie,Ming Yue,Li Xiaoxin,Xing Zeyu,Qin Ling,Zhao Zhengye,Jia Ziqi,Li Jiaxin,Liu Gang,Zhang Menglu,Feng Kexin,Wu Jiang,Zhang Jianguo,Yang Yongxin,Wu Zhihong,Liu Zhihua,Ying Jianming,Wang Xin,Su Jianzhong,Wang Xiang,Wu NanORCID

Abstract

Abstract Background Identifying breast cancer patients with DNA repair pathway-related germline pathogenic variants (GPVs) is important for effectively employing systemic treatment strategies and risk-reducing interventions. However, current criteria and risk prediction models for prioritizing genetic testing among breast cancer patients do not meet the demands of clinical practice due to insufficient accuracy. Methods The study population comprised 3041 breast cancer patients enrolled from seven hospitals between October 2017 and 11 August 2019, who underwent germline genetic testing of 50 cancer predisposition genes (CPGs). Associations among GPVs in different CPGs and endophenotypes were evaluated using a case-control analysis. A phenotype-based GPV risk prediction model named DNA-repair Associated Breast Cancer (DrABC) was developed based on hierarchical neural network architecture and validated in an independent multicenter cohort. The predictive performance of DrABC was compared with currently used models including BRCAPRO, BOADICEA, Myriad, PENN II, and the NCCN criteria. Results In total, 332 (11.3%) patients harbored GPVs in CPGs, including 134 (4.6%) in BRCA2, 131 (4.5%) in BRCA1, 33 (1.1%) in PALB2, and 37 (1.3%) in other CPGs. GPVs in CPGs were associated with distinct endophenotypes including the age at diagnosis, cancer history, family cancer history, and pathological characteristics. We developed a DrABC model to predict the risk of GPV carrier status in BRCA1/2 and other important CPGs. In predicting GPVs in BRCA1/2, the performance of DrABC (AUC = 0.79 [95% CI, 0.74–0.85], sensitivity = 82.1%, specificity = 63.1% in the independent validation cohort) was better than that of previous models (AUC range = 0.57–0.70). In predicting GPVs in any CPG, DrABC (AUC = 0.74 [95% CI, 0.69–0.79], sensitivity = 83.8%, specificity = 51.3% in the independent validation cohort) was also superior to previous models in their current versions (AUC range = 0.55–0.65). After training these previous models with the Chinese-specific dataset, DrABC still outperformed all other methods except for BOADICEA, which was the only previous model with the inclusion of pathological features. The DrABC model also showed higher sensitivity and specificity than the NCCN criteria in the multi-center validation cohort (83.8% and 51.3% vs. 78.8% and 31.2%, respectively, in predicting GPVs in any CPG). The DrABC model implementation is available online at http://gifts.bio-data.cn/. Conclusions By considering the distinct endophenotypes associated with different CPGs in breast cancer patients, a phenotype-driven prediction model based on hierarchical neural network architecture was created for identification of hereditary breast cancer. The model achieved superior performance in identifying GPV carriers among Chinese breast cancer patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program

the PUMC Youth Fund & the Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for Wenzhou Institute of University of Chinese Academy of Sciences

the CAMS Innovation Fund for Medical Sciences

the Beijing Hope Run Special Fund

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3