Abstract
Abstract
Background
There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures.
Methods
To gain insights into these relationships, we developed a network-based method, named GeneSigNet that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes.
Results
Applying GeneSigNet to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GeneSigNet also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GeneSigNet also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway.
Conclusions
GeneSigNet provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GeneSigNet method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.
Funder
Intramural Research Program of the National Library of Medicine at the National Institutes of Health, USA
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献