Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes

Author:

Kim Chan Yeong,Lee Muyoung,Yang Sunmo,Kim Kyungnam,Yong Dongeun,Kim Hye Ryun,Lee InsukORCID

Abstract

Abstract Background Metagenome sampling bias for geographical location and lifestyle is partially responsible for the incomplete catalog of reference genomes of gut microbial species. Thus, genome assembly from currently under-represented populations may effectively expand the reference gut microbiome and improve taxonomic and functional profiling. Methods We assembled genomes using public whole-metagenomic shotgun sequencing (WMS) data for 110 and 645 fecal samples from India and Japan, respectively. In addition, we assembled genomes from newly generated WMS data for 90 fecal samples collected from Korea. Expecting genome assembly for low-abundance species may require a much deeper sequencing than that usually employed, so we performed ultra-deep WMS (> 30 Gbp or > 100 million read pairs) for the fecal samples from Korea. We consequently assembled 29,082 prokaryotic genomes from 845 fecal metagenomes for the three under-represented Asian countries and combined them with the Unified Human Gastrointestinal Genome (UHGG) to generate an expanded catalog, the Human Reference Gut Microbiome (HRGM). Results HRGM contains 232,098 non-redundant genomes for 5414 representative prokaryotic species including 780 that are novel, > 103 million unique proteins, and > 274 million single-nucleotide variants. This is an over 10% increase from the UHGG. The new 780 species were enriched for the Bacteroidaceae family, including species associated with high-fiber and seaweed-rich diets. Single-nucleotide variant density was positively associated with the speciation rate of gut commensals. We found that ultra-deep sequencing facilitated the assembly of genomes for low-abundance taxa, and deep sequencing (e.g., > 20 million read pairs) may be needed for the profiling of low-abundance taxa. Importantly, the HRGM significantly improved the taxonomic and functional classification of sequencing reads from fecal samples. Finally, analysis of human self-antigen homologs on the HRGM species genomes suggested that bacterial taxa with high cross-reactivity potential may contribute more to the pathogenesis of gut microbiome-associated diseases than those with low cross-reactivity potential by promoting inflammatory condition. Conclusions By including gut metagenomes from previously under-represented Asian countries, Korea, India, and Japan, we developed a substantially expanded microbiome catalog, HRGM. Information of the microbial genomes and coding genes is publicly available (www.mbiomenet.org/HRGM/). HRGM will facilitate the identification and functional analysis of disease-associated gut microbiota.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3