What might it cost to increase soil organic carbon using no-till on U.S. cropland?

Author:

Sperow MarkORCID

Abstract

Abstract Background Existing research provides estimates of the biophysical potential for increasing soil organic carbon (SOC) stock, however additional research is needed to enhance our understanding of the economic potential for agricultural soils to offset or help reduce CO2 emissions. This study derives the marginal cost to increase SOC sequestration by combining SOC sequestration potential estimates developed using the Intergovernmental Panel on Climate Change (IPCC) factors with an existing payment scheme that was designed to increase no-till (NT) adoption on U.S. cropland. The marginal costs of increasing SOC is a function of the amount of SOC that could be increased through NT and the expected cost to landowners of changing management to use NT. Results The variability in SOC sequestration rates due to different land-use, management histories, climate, and soils, combined with the 48 unique payment rates to adopt NT, yield over 5,000 unique marginal cost values for increasing SOC sequestration. Nearly 95 percent of the biophysical potential SOC sequestration increase on U.S. cropland (2802 Tg CO2 from 140.1 Tg CO2 year−1 for 20 years) could be captured for less than $100 Mg−1 CO2. An estimated 64 to 93 percent of the biophysical potential could be captured for less than the low and high estimated costs to capture CO2 for geologic storage of $36.36 to $86.06 Mg−1 CO2, respectively. Conclusions Decreasing tillage intensity through adoption of no-till agriculture offers a cost-effective way to offset a portion of increasing global CO2 emissions. This research demonstrates that increasing SOC stocks through NT adoption can offset CO2 emissions at a lower cost than some other options for preventing CO2 from entering the atmosphere.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

Reference61 articles.

1. Abreu SL, Godsey CB, Edwards JT, Warren JG. Assessing carbon and nitrogen stocks of no-till systems in Oklahoma. Soil Tillage Res. 2011;117:28–33.

2. Antle J, Valdiva R, Capalbo S. Economic analysis of CO2 sequestration, utilization, and storage. Presentation to the Big Sky Carbon Sequestration Partnership Annual Meeting. Great Falls 2012.

3. Antle JM, Capalbo SM, Paustian K, Kamar Ali M. Estimating the economic potential for agricultural soil carbon sequestration in the Central United States using an aggregate econometric-process simulation model. Clim Change. 2007;80:145–71.

4. Biardeau, L., R. Crebbin-Coates, R. Keerati, S. Litke, and H. Rodriguez. 2016. Soil health and carbon sequestration in US croplands: a policy analysis. https://food.berkeley.edu/wp-content/uploads/2016/05/GSPPCarbon_03052016_FINAL.pdf. Accessed 2 Sept 2020.

5. Bruce JP, Frome M, Haites E, Janzen H, Lal R, Paustian K. Carbon sequestration in soils. J Soil Water Conservat. 1999;54:382–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3