Treadmill training mitigates bone deterioration via inhibiting NLRP3/Caspase1/IL-1β signaling in aged rats

Author:

Wu Qi,Zhong Peirui,Ning Pengyun,Tan Lu,Huang Xiarong,Peng Ting,Yin Linwei,Luo Fu,Qu Mengjian,Zhou Jun

Abstract

Abstract Introduction Although aerobic physical exercise may improve osteoporosis during ageing, the underlying mechanism of the favorable effects remains unclear. The aim of this study was to examine the localized and generalized proinflammatory indicators and the adaptive skeletal responses to treadmill training in aged rats to explore the potential mechanisms by which treadmill training impacts bone deterioration in a natural aged rat model. Materials and methods A total of 24 Sprague Dawley (SD) rats were included in this study. Sixteen of all these animals were twenty-four months natural aged male SD rats, which were distributed into two groups (n = 8/group): AC group with sham treadmill training, and AT group with 8 weeks treadmill training. The remaining 8 were six months male SD rats matched subline and supplier, which were used as the adult control group with sham treadmill training (YC group, n = 8). The serum, bone marrow, fresh femur, tibia, and lumbar spine were harvested for molecular biological analysis, bone mineral density (BMD) testing, and micro-CT analysis after 8 weeks of treadmill training. Results After 8 weeks of intervention, the results showed that treadmill training increased BMD and inhibited deterioration of bone microarchitecture of hind limb bones. Further analysis showed that treadmill training increased serum P1CP concentration and decreased serum CTX-1level. Interestingly, treadmill training down-regulated the protein expressions of proinflammatory indicators, including NLRP3, proCaspase1, cleaved Caspase1, IL-1β, and GSDMD-N, and the mRNA levels of NLRP3, Caspase1, and IL-1β of the bone marrow. In addition, treadmill training also inhibited serum TNF-α and IL-1β concentration. However, 8 weeks of treadmill training did not increase BMD and bone microarchitecture in the lumbar spine. Conclusion Treadmill training mitigates the ageing-induced bone loss and reverses the deterioration of bone microarchitecture in hind limbs probably through inhibiting NLRP3/Caspase1/IL-1β signaling to attenuate low-grade inflammation and improve the inflammatory bone microenvironment.

Funder

the key project of University of South China

National Natural Science Foundation of China

the Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3