Knockdown of PAR2 alleviates cancer-induced bone pain by inhibiting the activation of astrocytes and the ERK pathway

Author:

Tang Yiting,Chen Yupeng,Yang Mingzhu,Zheng Qiuhui,Li Yaoyuan,Bao Yanju

Abstract

Abstract Objective Cancer-induced bone pain (CIBP) is a kind of pain with complex pathophysiology. Proteinase-activated receptor 2 (PAR-2) is involved in CIBP. This study explored the effects of PAR-2 on CIBP rats. Methods CIBP rat model was established by injecting Walker 256 rat breast cancer cells into the left tibia of female Sprague-Dawley rats and verified by tibial morphology observation, HE staining, and mechanical hyperalgesia assay. CIBP rats were injected with PAR-2 inhibitor, ERK activator, and CREB inhibitor through the spinal cord sheath on the 13th day after operation. CIBP behaviors were measured by mechanical hyperalgesia assay. On the 14th day after operation, L4-5 spinal cord tissues were obtained. PAR-2 expression, co-expression of PAR-2 and astrocyte marker GFAP, GFAP mRNA and protein levels and the ERK pathway-related protein levels were detected by Western blot, immunofluorescence double staining, RT-qPCR, and Western blot. Results CIBP rats had obvious mechanical hyperalgesia and thermal hyperalgesia from the 7th day after modeling; mechanical hyperalgesia threshold and thermal threshold were decreased; PAR-2 was increased in spinal cord tissues and was co-expressed with GFAP. PAR-2 silencing alleviated rat CIBP by inhibiting astrocyte activation. p-ERK/t-ERK and p-CREB/t-CREB levels in CIBP spinal cord were elevated, the ERK/CREB pathway was activated, while the ERK/CREB pathway was inhibited by PAR-2 silencing. The alleviating effect of PAR-2 inhibitor on hyperalgesia behaviors in CIBP rats were weakened by ERK activator, while were partially restored by CREB inhibitor. Conclusions PAR-2 knockdown inhibited the ERK/CREB pathway activation and astrocyte activation, thus alleviating CIBP in rats.

Funder

National Natural Scientific Foundation of China

CACMS Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3