Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model

Author:

Kawashima Itaru,Matsushita Masaki,Mishima Kenichi,Kamiya Yasunari,Osawa Yusuke,Ohkawara Bisei,Ohno Kinji,Kitoh Hiroshi,Imagama Shiro

Abstract

Abstract Background Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). Methods The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). Results BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. Conclusion Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3