Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates

Author:

Chen Jianmin,Liu Guoyin,Bao Tianyi,Xu Yuansheng,Luo Hu,Wu Yu,Cai Dawei,Qin Feng,Zhao Jianning

Abstract

Abstract Objective To evaluate the biomechanical effects of different miniplates on restorative laminoplasty. Methods Assembled restorative laminoplasty models were developed based on 3D printed L4 lamina. Based on different internal fixations, the research was divided into H-shaped miniplates (HSMs) group, two-hole miniplates (THMs) group, and L-shaped miniplates (LSMs) group. The static and dynamic compression tests were analyzed to investigate the biomechanical effects of different internal fixations in restorative laminoplasty, until the failure and fracture of miniplates, or the collapse of miniplates. The static compression tests adopted the speed control mode, and the dynamic fatigue compression tests adopted the load control mode. Results The “door close” and the collapse of lamina occurred in THMs group and LSMs group, and plate break occurred in LSMs group. However, these phenomenon was absent in HSMs group, and only plate crack around a screw and looseness of a screw tail cap were found in HSMs group. The sustainable yield load of HSMs group was greater than that of THMs group and LSMs group (P < 0.05). No significant difference in yielding-displacement was found between HSMs group and LSMs group (P > 0.05), while both were much less than that of THMs (P < 0.05). Moreover, the compressive stiffness and the axial displacement under the same mechanical load were arranged as follows: HSMs group > LSMs group > THMs group (P < 0.05). The results of dynamic compression test revealed that the peak load of HSMs group could reached 873 N and was 95% of the average yield load of the static compression, and was better than that in THMs group and LSMs group (P < 0.05). Besides, according to the fatigue life-peak load diagram, the ultimate load of HSMs group was more than twice that of THMs group or LSMs group. Conclusions The mechanical strength of H-shaped miniplates was superior to two-hole miniplates and L-shaped miniplates in maintaining spinal canal enlargement and spinal stability, and was more excellent in fatigue stability and ultimate load.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3