Biomechanical evaluation of different oblique lumbar interbody fusion constructs: a finite element analysis

Author:

Xu Zhengquan,Zheng Qingcong,Zhang Liqun,Chen Rongsheng,Li Zhechen,Xu Weihong

Abstract

Abstract Background Finite element analysis (FEA) was performed to investigate the biomechanical differences between different adjunct fixation methods for oblique lumbar interbody fusion (OLIF) and to further analyze its effect on adjacent segmental degeneration. Methods We built a single-segment (Si-segment) finite element model (FEM) for L4-5 and a double-segment (Do-segment) FEM for L3-5. Each complete FEM was supplemented and modified, and both developed two surgical models of OLIF with assisted internal fixation. They were OLIF with posterior bilateral percutaneous pedicle screw (TINA system) fixation (OLIF + BPS) and OLIF with lateral plate system (OLIF + LPS). The range of motion (ROM) and displacement of the vertebral body, cage stress, adjacent segment disc stress, and spinal ligament tension were recorded for the four models during flexion/extension, right/left bending, and right/left rotation by applying follower load. Results For the BPS and LPS systems in the six postures of flexion, extension, right/left bending, and right/left rotation, the ROM of L4 in the Si-segment FEM were 0.32°/1.83°, 0.33°/1.34°, 0.23°/0.47°, 0.24°/0.45°, 0.33°/0.79°, and 0.34°/0.62°; the ROM of L4 in the Do-segment FEM were 0.39°/2.00°, 0.37°/1.38°, 0.23°/0.47°, 0.21°/0.44°, 0.33°/0.57°, and 0.31°/0.62°, and the ROM of L3 in the Do-segment FEM were 6.03°/7.31°, 2.52°/3.50°, 4.21°/4.38°, 4.21°/4.42°, 2.09°/2.32°, and 2.07°/2.43°. BPS system had less vertebral displacement, less cage maximum stress, and less spinal ligament tension in Si/Do-segment FEM relative to the LPS system. BPS system had a smaller upper adjacent vertebral ROM, greater intervertebral disc stress in terms of left and right bending as well as left and right rotation compared to the LPS system in the L3-4 of the Do-segment FEM. There was little biomechanical difference between the same fixation system in the Si/Do-segment FEM. Conclusions Our finite element analysis showed that compared to OLIF + LPS, OLIF + BPS (TINA) is more effective in reducing interbody stress and spinal ligament tension, and it better maintains the stability of the target segment and provides a better fusion environment to resist cage subsidence. However, OLIF + BPS (TINA) may be more likely to cause adjacent segment degeneration than OLIF + LPS.

Funder

Fujian Provincial Health Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3