Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats

Author:

Hu Xiaorong,Gong He,Hou Aiqi,Wu Xiaodan,Shi Peipei,Zhang Yingying

Abstract

Abstract Background Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. Methods Seventy 6-week-old male Sprague–Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. Results It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). Conclusions CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relationship between mechanical and microstructural parameters of rat lumbar spine in different ages;Computer Methods in Biomechanics and Biomedical Engineering;2023-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3