Protective role of VEGF/VEGFR2 signaling against high fatality associated with hepatic encephalopathy via sustaining mitochondrial bioenergetics functions

Author:

Tsai Ching-YiORCID,Wu Jacqueline C. C.,Wu Chiung-Ju,Chan Samuel H. H.

Abstract

Abstract Background The lack of better understanding of the pathophysiology and cellular mechanisms associated with high mortality seen in hepatic encephalopathy (HE), a neurological complication arising from acute hepatic failure, remains a challenging medical issue. Clinical reports showed that the degree of baroreflex dysregulation is related to the severity of HE. Furthermore, mitochondrial dysfunction in the rostral ventrolateral medulla (RVLM), a key component of the baroreflex loop that maintains blood pressure and sympathetic vasomotor tone, is known to underpin impairment of baroreflex. Realizing that in addition to angiogenic and vasculogenic effects, by acting on its key receptor (VEGFR2), vascular endothelial growth factor (VEGF) elicits neuroprotection via maintenance of mitochondrial function, the guiding hypothesis of the present study is that the VEGF/VEGFR2 signaling plays a protective role against mitochondrial dysfunction in the RVLM to ameliorate baroreflex dysregulation that underpins the high fatality associated with HE. Methods Physiological, pharmacological and biochemical investigations were carried out in proof-of-concept experiments using an in vitro model of HE that involved incubation of cultured mouse hippocampal neurons with ammonium chloride. This was followed by corroboratory experiments employing a mouse model of HE, in which adult male C57BL/6 mice and VEGFR2 wild-type and heterozygous mice received an intraperitoneal injection of azoxymethane, a toxin used to induce acute hepatic failure. Results We demonstrated that VEGFR2 is present in cultured neurons, and observed that whereas recombinant VEGF protein maintained cell viability, gene-knockdown of vegfr2 enhanced the reduction of cell viability in our in vitro model of HE. In our in vivo model of HE, we found that VEGFR2 heterozygous mice exhibited shorter survival rate and time when compared to wild-type mice. In C57BL/6 mice, there was a progressive reduction in VEGFR2 mRNA and protein expression, mitochondrial membrane potential and ATP levels, alongside augmentation of apoptotic cell death in the RVLM, accompanied by a decrease in baroreflex-mediated sympathetic vasomotor tone and hypotension. Immunoneutralization of VEGF exacerbated all those biochemical and physiological events. Conclusions Our results suggest that, acting via VEGFR2, the endogenous VEGF plays a protective role against high fatality associated with HE by amelioration of the dysregulated baroreflex-mediated sympathetic vasomotor tone through sustaining mitochondrial bioenergetics functions and eliciting antiapoptotic action in the RVLM.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Medical Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3