Cysteine-rich protein 2 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice

Author:

Chen Chung-Huang,Ho Hua-Hui,Jiang Wei-Cheng,Ao-Ieong Wai-Sam,Wang Jane,Orekhov Alexander N.,Sobenin Igor A.,Layne Matthew D.,Yet Shaw-FangORCID

Abstract

Abstract Background Abdominal aortic aneurysm (AAA) is a relatively common and often fatal condition. A major histopathological hallmark of AAA is the severe degeneration of aortic media with loss of vascular smooth muscle cells (VSMCs), which are the main source of extracellular matrix (ECM) proteins. VSMCs and ECM homeostasis are essential in maintaining structural integrity of the aorta. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed protein; however, the role of CRP2 in AAA formation is unclear. Methods To investigate the function of CRP2 in AAA formation, mice deficient in Apoe (Apoe−/−) or both CRP2 (gene name Csrp2) and Apoe (Csrp2−/−Apoe−/−) were subjected to an angiotensin II (Ang II) infusion model of AAA formation. Aortas were harvested at different time points and histological analysis was performed. Primary VSMCs were generated from Apoe−/− and Csrp2−/−Apoe−/− mouse aortas for in vitro mechanistic studies. Results Loss of CRP2 attenuated Ang II-induced AAA incidence and severity, accompanied by preserved smooth muscle α-actin expression and reduced elastin degradation, matrix metalloproteinase 2 (MMP2) activity, deposition of collagen, particularly collagen III (Col III), aortic tensile strength, and blood pressure. CRP2 deficiency decreased the baseline MMP2 and Col III expression in VSMCs and mitigated Ang II-induced increases of MMP2 and Col III via blunting Erk1/2 signaling. Rescue experiments were performed by reintroducing CRP2 into Csrp2−/−Apoe−/− VSMCs restored Ang II-induced Erk1/2 activation, MMP2 expression and activity, and Col III levels. Conclusions Our results indicate that in response to Ang II stimulation, CRP2 deficiency maintains aortic VSMC density, ECM homeostasis, and structural integrity through Erk1/2–Col III and MMP2 axis and reduces AAA formation. Thus, targeting CRP2 provides a potential therapeutic strategy for AAA.

Funder

National Health Research Institutes, Taiwan

Ministry of Science and Technology

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3