Targeting influenza A virus by splicing inhibitor herboxidiene reveals the importance of subtype-specific signatures around splice sites

Author:

Han Yi-Ju,Lee Kuo-Ming,Wu Guan-Hong,Gong Yu-Nong,Dutta Avijit,Shih Shin-Ru

Abstract

Abstract Background The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. Methods We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. Results M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. Conclusions The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung Memorial Hospital

Foundation for the National Institutes of Health

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3