Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing

Author:

Jere Sandy WinfieldORCID,Abrahamse Heidi,Houreld Nicolette Nadene

Abstract

AbstractThe induction of a cells destiny is a tightly controlled process that is regulated through communication between the matrix and cell signalling proteins. Cell signalling activates distinctive subsections of target genes, and different signalling pathways may be used repeatedly in different settings. A range of different signalling pathways are activated during the wound healing process, and dysregulated cellular signalling may lead to reduced cell function and the development of chronic wounds. Diabetic wounds are chronic and are characterised by the inability of skin cells to act in response to reparative inducements. Serine/threonine kinase, protein kinase B or AKT (PKB/AKT), is a central connection in cell signalling induced by growth factors, cytokines and other cellular inducements, and is one of the critical pathways that regulate cellular proliferation, survival, and quiescence. AKT interacts with a variety of other pathway proteins including glycogen synthase kinase 3 beta (GSK3β) and β-catenin. Novel methodologies based on comprehensive knowledge of activated signalling pathways and their interaction during normal or chronic wound healing can facilitate quicker and efficient diabetic wound healing. In this review, we focus on interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances on application of polysaccharides in cosmetics;Journal of Dermatologic Science and Cosmetic Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3