Ozonated water soaking improves the flower growth, antioxidant activity, and bioactive compound accumulation in Agastache rugosa

Author:

Lam Vu Phong,Loi Dao Nhan,Kim Sunwoo,Shin Juhyung,Park Jongseok

Abstract

AbstractOzonated water (OW) is now being recognized as an innovative and eco-friendly solution for managing plant growth while also promoting the production of bioactive compounds and essential plant metabolites. This study aimed to identify the most effective duration of OW treatment to promote plant growth and accumulation of antioxidant activity and bioactive compounds in Agastache rugosa in a plant factory. Whole plants were subjected to OW soaking treatments for varying durations (0, 1, 10, 20, 40, and 80 s) at a concentration of 1 µmol·mol−1, once per week, at 0, 1, 2, 3, and 4 weeks after transplantation. Five weeks after transplantation, plant samples were collected for the analysis of their plant growth parameters, photosynthetic pigments and parameters, total flavonoid, antioxidant activity, and bioactive compounds. Stem length was decreased in all OW treatments, while the number of flower branches, the flower fresh and dry weights were significantly increased under 20, 40, and 80 s OW treatments than in the control group. The net photosynthetic rate decreased significantly in 20, 40, and 80 s OW treatments compared with the control. Chlorophyll a concentration was the highest in the 20-s OW treatment, and chlorophyll b concentration was the highest in the 10-s OW treatment. Total flavonoid levels in plants increased significantly under 20-, 40-, and 80-s OW treatments, and their antioxidant activity (superoxide dismutase, catalase, and peroxidase) were significantly higher under 40- and 80-s OW treatments than in the control. Rosmarinic acid content increased significantly under the 10- and 40-s OW treatments, whereas the tilianin and acacetin contents increased significantly under the 20-, 40-, and 80-s OW treatments compared to those in the control. Our results suggest that soaking whole plants in OW for 20–80 s enhances the flower growth and bioactive compounds in A. rugosa for medicinal use. Graphical Abstract

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) and Korea Smart Farm R&D Foundatio

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3