Predicting protein–protein interactions between banana and Fusarium oxysporum f. sp. cubense race 4 integrating sequence and domain homologous alignment and neural network verification

Author:

Fang HuiORCID,Zhong Cheng,Tang Chunyan

Abstract

AbstractBackgroundThe pathogen of bananaFusarium oxysporumf. sp. cubense race 4(Foc4) infects almost all banana species, and it is the most destructive. The molecular mechanism of the interactions betweenFusarium oxysporumand banana still needs to be further investigated.MethodsWe use both the interolog and domain-domain method to predict the protein–protein interactions (PPIs) between banana and Foc4. The predicted protein interaction sequences are encoded by the conjoint triad and autocovariance method respectively to obtain continuous and discontinuous information of protein sequences. This information is used as the input data of the neural network model. The Long Short-Term Memory (LSTM) neural network five-fold cross-validation and independent test methods are used to verify the predicted protein interaction sequences. To further confirm the PPIs between banana and Foc4, the GO (Gene Ontology) and KEGG (Kyoto Encylopedia of Genes and Genomics) functional annotation and interaction network analysis are carried out.ResultsThe experimental results show that the PPIs for banana and foc4 predicted by our proposed method may interact with each other in terms of sequence structure, GO and KEGG functional annotation, and Foc4 protein plays a more active role in the process of Foc4 infecting banana.ConclusionsThis study obtained the PPIs between banana and Foc4 by using computing means for the first time, which will provide data support for molecular biology experiments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Département Caractérisation et Élaboration des Produits Issus de l’Agriculture, Institut National de la Recherche Agronomique

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3