Production of high-quality two-dimensional gel electrophoresis profile for marine medaka samples by using Trizol-based protein extraction approaches

Author:

Kwok Celia Sze-Nga,Lai Kaze King-Yip,Lam Sai-Wo,Chan Kin-Ka,Xu Steven Jing-Liang,Lee Fred Wang-FatORCID

Abstract

Abstract Background Marine medaka is among the most popular models of fish species for ecotoxicology and environmental research and proteomic studies are useful tools for understanding the molecular responses of medaka upon exposure to different environmental stressors. The preparation of high-quality protein samples is the key to producing high-quality two-dimensional gel electrophoresis (2-DE) results for proteomic analysis. In recent years, Trizol-based protein extraction has been gaining popularity because of its promising performance in producing high-quality 2-DE as well as the convenience of the method. Methods Three Trizol-based approaches (Trizol method, Aliquot Trizol method and Trizol method with a commercial clean-up kit) were used to extract proteins from a marine medaka sample and 2-DE profiles were produced. Quality of the 2-DE profiles and effectiveness of the extraction methods were evaluated. For comparison, two common protein extraction methods (lysis buffer method and trichloroacetic acid (TCA)/acetone precipitation extraction) were also applied in parallel to Trizol-based approaches. Results Any of the three Trizol-based approaches produced a high-quality 2-DE profile of marine medaka compared with both lysis buffer method and TCA/acetone precipitation extraction. In addition, Trizol method with a commercial clean-up kit produced the best 2-DE profile in terms of background clarity, number of spots and resolution of proteins. Conclusions Trizol-based approaches offered better choices than traditional protein extraction methods for 2-DE analysis of marine medaka. The modified version of Trizol method with a commercial clean-up kit was shown to produce the best 2-DE profile.

Funder

Research Grants Council of the Hong Kong Special Administrative Region - Hong Kong

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3