Evaluation of a novel CBCT conversion method implemented in a treatment planning system

Author:

Lechner WolfgangORCID,Kanalas Dávid,Haupt Sarah,Zimmermann Lukas,Georg DietmarORCID

Abstract

Abstract Background To evaluate a novel CBCT conversion algorithm for dose calculation implemented in a research version of a treatment planning system (TPS). Methods The algorithm was implemented in a research version of RayStation (v. 11B-DTK, RaySearch, Stockholm, Sweden). CBCTs acquired for each ten head and neck (HN), gynecology (GYN) and lung cancer (LNG) patients were collected and converted using the new algorithm (CBCTc). A bulk density overriding technique implemented in the same version of the TPS was used for comparison (CBCTb). A deformed CT (dCT) was created by using deformable image registration of the planning CT (pCT) to the CBCT to reduce anatomical changes. All treatment plans were recalculated on the pCT, dCT, CBCTc and the CBCTb. The resulting dose distributions were analyzed using the MICE toolkit (NONPIMedical AB Sweden, Umeå) with local gamma analysis, with 1% dose difference and 1 mm distance to agreement criteria. A Wilcoxon paired rank sum test was applied to test the differences in gamma pass rates (GPRs). A p value smaller than 0.05 considered statistically significant. Results The GPRs for the CBCTb method were systematically lower compared to the CBCTc method. Using the 10% dose threshold and the dCT as reference the median GPRs were for the CBCTc method were 100% and 99.8% for the HN and GYN cases, respectively. Compared to that the GPRs of the CBCTb method were lower with values of 99.8% and 98.0%, for the HN and GYN cases, respectively. The GPRs of the LNG cases were 99.9% and 97.5% for the CBCTc and CBCTb method, respectively. These differences were statistically significant. The main differences between the dose calculated on the CBCTs and the pCTs were found in regions near air/tissue interfaces, which are also subject to anatomical variations. Conclusion The dose distribution calculated using the new CBCTc method showed excellent agreement with the dose calculated using dCT and pCT and was superior to the CBCTb method. The main reasons for deviations of the calculated dose distribution were caused by anatomical variations between the pCT and the corrected CBCT.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3