Quantitative analysis of the impact of respiratory state on the heartbeat-induced movements of the heart and its substructures

Author:

Liang Benzhe,Gong Guanzhong,Tong Ying,Wang Lizhen,Su Ya,Wang Huadong,Li Zhenkai,Yan Hongyu,Zhang Xiaohong,Yin Yong

Abstract

Abstract Purpose This study seeks to examine the influence of the heartbeat on the position, volume, and shape of the heart and its substructures during various breathing states. The findings of this study will serve as a valuable reference for dose-volume evaluation of the heart and its substructures in radiotherapy for treating thoracic tumors. Methods Twenty-three healthy volunteers were enrolled in this study, and cine four-dimensional magnetic resonance images were acquired during periods of end-inspiration breath holding (EIBH), end-expiration breath holding (EEBH), and deep end-inspiration breath holding (DIBH). The MR images were used to delineate the heart and its substructures, including the heart, pericardium, left ventricle (LV), left ventricular myocardium, right ventricle (RV), right ventricular myocardium (RVM), ventricular septum (VS), atrial septum (AS), proximal and middle portions of the left anterior descending branch (pmLAD), and proximal portion of the left circumflex coronary branch (pLCX). The changes in each structure with heartbeat were compared among different respiratory states. Results Compared with EIBH, EEBH increased the volume of the heart and its substructures by 0.25–3.66%, while the average Dice similarity coefficient (DSC) increased by − 0.25 to 8.7%; however, the differences were not statistically significant. Conversely, the VS decreased by 0.89 mm in the left–right (LR) direction, and the displacement of the RV in the anterior–posterior (AP) direction significantly decreased by 0.76 mm (p < 0.05). Compared with EIBH and EEBH, the average volume of the heart and its substructures decreased by 3.08–17.57% and 4.09–20.43%, respectively, during DIBH. Accordingly, statistically significant differences (p < 0.05) were observed in the volume of the heart, pericardium, LV, RV, RVM, and AS. The average DSC increased by 0–37.04% and − 2.6 to 32.14%, respectively, with statistically significant differences (p < 0.05) found in the right ventricular myocardium and interatrial septum. Furthermore, the displacements under DIBH decreased in the three directions (i.e.,− 1.73 to 3.47 mm and − 0.36 to 2.51 mm). In this regard, the AP displacement of the heart, LV, RV, RVM, LR direction, LV, RV, and AS showed statistically significant differences (p < 0.05). The Hausdorff distance (HD) of the heart and its substructures under the three breathing states are all greater than 11 mm. Conclusion The variations in the displacement and shape alterations of the heart and its substructures during cardiac motion under various respiratory states are significant. When assessing the dose-volume index of the heart and its substructures during radiotherapy for thoracic tumors, it is essential to account for the combined impacts of cardiac motion and respiration.

Funder

Taishan Scholars Project of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3