Probing the multitargeting potential of n-hexane fraction of Gongronema latifolium leaves in neurodegeneration via in vitro, GC–MS and in silico studies

Author:

Gyebi Gideon A.ORCID,Ejoh Joseph C.,Ogunyemi Oludare M.,Ibrahim Auza Moses,Ibrahim Ibrahim M.,Afolabi Saheed O.,Anyanwu Gabriel O.,Ojo Rotimi J.,Ogunro Olalekan B.,Alotaibi Badriyah S.,Batiha Gaber El-Saber

Abstract

Abstract Background Neurodegenerative disorders (NDDs) are associated with increased activities of brain acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) as well as Aβ-amyloid (Aβ) neurotoxicity; therefore, they offer a therapeutic option for the treatment of NDDs such as Alzheimer’s disease (AD). This study was aimed at identifying multi-targeting neurotherapeutics from Gongronema latifolium leaves using in vitro analysis, GC–MS profiling and computational methods. Results The n-hexane solvent partition fraction of the methanol extract of Gongronema latifolium leaf (HF) exhibited concentration-dependent inhibitory activities against acetylcholinesterase and butyrylcholinesterase but not against MOA in vitro. The GC–MS chemical profiling identified 17 phytochemicals from the HF; these were further screened against human AChE, BChE, β-secretase enzyme (BACE1) and amyloid-β (Aβ) fibrils using molecular docking, ensemble-based docking (EBD), molecular dynamics simulation (MDs) and binding free energy (BFG) coupled with predictive adsorption, distribution, metabolism, excretion and toxicity (ADMET) analysis. The lead phytochemicals (LPs) (dihydroactinidiolide and 1H-Indole-3-ethanamine), with mean binding energies (− 6.525 ± 0.895 and 6.475 ± 0.985; − 6.833 ± 0.461 and − 6.466 ± 0.577; − 6.2 ± 0.845 and − 5.95 ± 0.353 kcal/mol) exhibited multi-target binding tendencies to the catalytic residues of hAChE, hBChE and hBACE1, in addition to hAβ fibril-disruptive tendencies (− 6.325 ± 0.545 and − 5.95 ± 0.353 kcal/mol), respectively. These results corroborated the initial molecular docking and BFG computations. The lead phytochemical–protein complexes were stable during the period of MDs. The LP presented favorable drug-likeness and ADMET properties coupled with the capacity to traverse the BBB. Conclusion Dihydroactinidiolide and 1H-Indole-3-ethanamine, in part or in synergy, are identified as neurotherapeutic constituents of Gongronema latifolium that may have been responsible for the ethnopharmacologically reported neurotherapeutic activities of the leaf, and hence they are suggested as potential drug candidates that can be useful for managing or treating neurodegenerative disease such as Alzheimer's disease, subject to further investigation.

Funder

Princess Nourah bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3