A study on bio-diversity and antiplasmodial activity of rhizosphere soil samples from medicinal plants in Kolli Hills

Author:

Vembaiyan Rajagopalan,Sadasivam Senthilkumar,Singh Vineeta,Gnanadesigan MurugesanORCID

Abstract

Abstract Background Over the previous two decades, Plasmodium falciparum strains have become increasingly resistant to several medications. As a result, there is an urgent need to develop new therapeutic options. Taking this into account, we focused our research on screening microbial extracts from rhizosphere soil samples in specific regions, which increases the likelihood of discovering bacteria capable of producing antiplasmodial activity. Results In the current study, we aimed to isolate thirty-two different medicinal plant rhizosphere soil samples collected from Kolli Hills (January–December 2016). Isolation was performed on nutrient and starch casein agar medium by serial dilutions, and distinct colonies were chosen from each dilution. A total of two seventy-five bacterial isolates were isolated from the research plants and kept as pure cultures on nutrient agar. In which, maximum count of fourteen Gram-positive spore forming bacilli strains have been identified and further evaluated for morphological, cultural, and biochemical traits and significantly identified as Bacillus species. Further, promising anti-plasmodial action was demonstrated by B. megaterium bacterial extracts, with IC50 values of 24.65 µg/mL at 24 h and 7.82 µg/mL at 48 h. Bacillus mycoides showed good antiplasmodial activity with (IC50P. falciparum 3D7: 23.52 μg/mL at 24 h and 22.88 μg/mL at 48 h, Bacillus flexus showed IC50 of 18.36 and 6.24 μg/mL and moderate antiplasmodial activity observed in Bacillus tequilensis. Poor antiplasmodial activity was found in Bacillus subtillis, Bacillus macerans, Bacillus pumilus and Bacillus larvey. Interestingly, 16S rRNA sequencing results confirmed that our bacterial species was Bacillus megaterium with 99% similarity observed with the accession number KX495303.1. Additionally, GC–MS analysis revealed effective anti-plasmodial bioactive compounds. Conclusions These findings show the potential of B. megaterium from Achyranthes aspera as a antiplasmodial agent. However, more research is needed to fully understand the bioactive compound of these strains and further studies are necessary to explore drug formulation and toxicity levels in the future.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3