The design and evaluation of ciprofloxacin-loaded nanoformulations using Ipomoea batatas starch nanoparticles

Author:

Ajala Tolulope O.,Omoteso Omobolanle A.ORCID,Awe Oladotun M.

Abstract

Abstract Background Starch nanoparticle derivatives are gaining popularity as drug delivery vehicles because of their biocompatibility, better mechanical characteristics, heat stability properties, impediment qualities, permeability capabilities, and flexibility to be changed for specific predetermined functions. The effect of techniques and processing time on the physiochemical and drug release characteristics of sweet potato (Ipomoea batatas) starch nanoparticles and their ciprofloxacin-loaded nanoformulations was studied. Results Scanning electron microscopy confirmed that the treated starch formed nanoparticles and also revealed significant changes in the morphology of the treated starches. The water absorption capacity of chemically treated starch nanoparticles (CTSN)-3 days was the highest, whereas CTSN-6 days had the maximum solubility. The functional groups present in the starch nanoparticles were confirmed by Fourier transform infrared spectroscopy and Raman. The thermal characteristics of starch nanoparticles were established using hot-stage microscopy, differential scanning calorimetry, and thermogravimetric analysis. The percentage drug content and loading efficiency of the model drug were extensively boosted by the chemical and mechanical treatment of Ipomoea batatas starch. In comparison with the untreated potato starch (UPS), release times for loaded drug were significantly longer for the chemically treated starch nanoparticles and mechanically treated starch nanoparticles (MTSN) starches in the rank order of T80%, CTSN-3 days > MTSN-3 days > CTSN-6 days > MTSN-6 days > UPS. The main kinetics of drug release were Fickian diffusion. Conclusion After 3 days of acid hydrolysis, sweet potato starch yielded nanoparticulate carriers that can be employed for controlled or extended release of medicines that are poorly water soluble.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formulation and development of Tacrolimus nanosponges-loaded hydrogel for the treatment of atopic dermatitis;Current Issues in Pharmacy and Medical Sciences;2024-06-01

2. Potential of natural polymeric materials in pharmaceutics;Pharmacological Research - Natural Products;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3