Integrating in silico molecular docking, ADMET analysis of C.verticillata with diabetic markers and in vitro anti-inflammatory activity

Author:

A. Maheswari,DE SalamunORCID

Abstract

Abstract Background Over the past decade, various research studies have proved the interconnection between the inflammatory pathways and diabetes complication in clinical condition. The present study evaluated the anti-inflammatory and antioxidant activity. Further, the sample was tested for its pharmacokinetics properties and the best compounds were docked with the diabetic markers (DPP IV (PDB-ID: IJ2E) and SGLT2 (PDB-ID: 7VSI)). Results C.verticillata showed a good hydrogen peroxide (78.3 ± 0.34%, IC50 = 287.81 µg/ml) and superoxide scavenging activity (52.7 ± 1.26%, IC50 = 796.15 µg/ml). In addition, the sample was checked for its anti-inflammatory activity with protein denaturation (57.4 ± 0.19%, IC50 = 471.5 µg/ml) and proteinase inhibition assay (68.3 ± 0.48%, IC50 = 213.42 µg/ml). Further, the bioactive compounds detected from HPLC-ESI-MS/MS analyzed sample were checked for its drug likeliness by checking its ADME properties and toxicological parameters. It has been observed that except Loliolide, all the other compounds have followed the physicochemical parameters and proved to exhibit drug likeliness characteristics. The bioactive compounds that follow the Lipinski’s rule were taken further for in silico molecular docking analysis with the diabetic protein markers (DPP IV and SGLT2). Docking results revealed that Pyro pheophorbide a with DPP IV and Dihydromonacolin L acid with SGLT2 have recorded a maximum docking score of (− 9.4 kcal/mol) and (− 9.2 kcal/mol), respectively. Conclusion The observed results suggest that the identified and selected bioactive compounds from C.verticillata can be considered as a potential target molecule for the management of oxidative stress induced diabetic condition. Furthermore, the study also provides an insight on the effectiveness of the compounds on reducing the inflammation as well.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3