Deep eutectic solvent strategy for green extraction of chlorogenic acid from sea buckthorn: optimization and sustainability

Author:

Saddique Iqra,Akram Sumia,Rubab Saima,Sadiqa Ayesha,Raza Ali,Mushtaq Muhammad,Ghauri Mohsin AhmadORCID

Abstract

Abstract Background Sea buckthorn (Hippophae rhamnoides), a deciduous species plant, is widely distributed around the globe, and native to the cold-temperate regions of Europe and Asia. This medicinal herb contains several bioactive constituents including chlorogenic acid. The conventional methods used for the extraction of phenolic antioxidants from natural herbs often result in low yields, high toxicity, and pose environmental hazards limiting their effectiveness and scalability. Therefore, green extraction techniques using deep eutectic solvents, composed of natural, non-toxic, and biodegradable components were applied for extraction of chlorogenic acid from sea buckthorn weed. Fourteen deep eutectic solvent mixtures were prepared and evaluated for extraction yield of chlorogenic acid. Parameters such as hydrogen bond donor-to-hydrogen bond acceptor ratio, liquid-to-solid ratio, shaking speed, and shaking time were optimized for the best mixture. Results The combination of lactic acid and maltose (1:1) was found to give best extraction yield using response surface methodology. The deep eutectic solvent system under optimum conditions produced 12.2 g/100 g of crude extract sea buckthorn containing 174.7 mg gallic acid equivalents (mg GA)/g) of extract. Moreover, the optimized extract exhibited appreciable radical scavenging capacity (91%), trolox equivalent antioxidant capacity (11.2% of extract), and inhibition of peroxide in linoleic acid (80.6%). High-performance liquid chromatography-based characterization revealed the extracts contained chlorogenic acid (20.1 mg/g of extract) as the major constituent. Conclusions In summary, the adoption of DES for the extraction of bioactive phenolic constituents from sea buckthorn offers multiple benefits, including economic efficiency, enhanced extraction performance, and environmental sustainability. The findings of this study not only advance the understanding of DES in phytochemical extraction but also pave the way for broader application of green solvents in the natural products industry. Future research should focus on further optimizing DES formulations and scaling up the extraction process to fully realize the potential of this innovative extraction method in commercial applications.

Funder

NRPU

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3