Screening and characterization of bioactive compounds from two epiphytic microlichen and evaluation of their in vitro antioxidant activity

Author:

Pradhan ShubhamORCID,Dash SatyabrataORCID,Sahoo BijayanandaORCID,Parida SabyasachyORCID,Rath BiswajitORCID

Abstract

Abstract Background Lichens in symbiosis produce a wide range of primary and secondary fine compounds in extreme environmental conditions that have a broad range of biological properties as well as antioxidant potential and can be used in future pharmaceuticals as a natural source of antioxidant molecules. Results The two microlichen species collected are identified based on morphological and molecular techniques; further studies are carried out by analyzing phytochemicals (FTIR, GC MS), and antioxidant assays are evaluated. The non-enzymatic antioxidant activity is evaluated by DPPH and FRAP assays. The methanol extract of both lichens showed virtuous DPPH scavenge with IC50 of P. nitida (125.76 ± 0.023 µg/ml) and G. scripta IC50 (176.90 ± 0.058 µg/ml). FRAP activity was prominent in the methalonic extract. The enzymatic antioxidant activity is observed by SOD and catalase activity. The cytosolic (Cu–Zn-SOD and Fe-SOD) and mitochondrial SOD (Mn-SOD) are detected in lichens, though P. nitida shows mitochondrial Mn-SOD and cytosolic Cu–Zn-SOD and Fe-SOD, whereas G. scripta has a single cytosolic Cu–Zn-SOD; however, two isoforms of catalase were reported. GC–MS analysis screened bioactive metabolites such as phenols, Quinons, heterocyclic compounds, benzofurans, fatty acids, pyrans, carboxylic acid, aliphatic aldehydes, organic alcohol, fluorinated aliphatic substances, ketones, terpenes and fatty alcohols in P. nitida, whereas, in G. scripta screened fatty acids, alcohols, hydrocarbons, carbonyl compounds, polyols, terpenes, glycosides, phenols, and sugar alcohols detected in the chromatogram peak. FTIR analysis revealed functional groups like Alcohols, Amines, Amides, Alkanes, Aldehydes, Carboxylic acid, Alkynes, Esters, Ketones, Anhydrides, Acid chlorides, Alkenes, Aromatic compounds, Nitro compounds, Alkyl and Aryl Halides in both lichens. Conclusions The results obtained in the present study proved that P. nitida and G. scripta have promising antioxidant activity owing to the presence of polyphenols and terpenes, as evidenced by DPPH and FRAP assay along with enzymatic analysis (SOD and CAT). Thus both the lichens may be used as natural sources of new bioactive molecules having pharmaceutical interest.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3