Decomposing compounds enables reconstruction of interaction fingerprints for structure-based drug screening

Author:

Adasme Melissa F.,Bolz Sarah Naomi,Al-Fatlawi Ali,Schroeder MichaelORCID

Abstract

Abstract Background Structure-based drug repositioning has emerged as a promising alternative to conventional drug development. Regardless of the many success stories reported over the past years and the novel breakthroughs on the AI-based system AlphaFold for structure prediction, the availability of structural data for protein–drug complexes remains very limited. Whereas the chemical libraries contain millions of drug compounds, the vast majority of them do not have structures to crystallized targets,and it is, therefore, impossible to characterize their binding to targets from a structural view. However, the concept of building blocks offers a novel perspective on the structural problem. A drug compound is considered a complex of small chemical blocks or fragments, which confer the relevant properties to the drug and have a high proportion of functional groups involved in protein binding. Based on this, we propose a novel approach to expand the scope of structure-based repositioning approaches by transferring the structural knowledge from a fragment to a compound level. Results We fragmented over 100,000 compounds in the Protein Data Bank (PDB) and characterized the structural binding mode of 153,000 fragments to their crystallized targets. Using the fragment’s data, we were able to artificially reconstruct the binding mode of over 7,800 complexes between ChEMBL compounds and their known targets, for which no structural data is available. We proved that the conserved binding tendency of fragments, when binding to the same targets, highly influences the drug’s binding specificity and carries the key information to reconstruct full drugs binding mode. Furthermore, our approach was able to reconstruct multiple compound-target pairs at optimal thresholds and high similarity to the actual binding mode. Conclusions Such reconstructions are of great value and benefit structure-based drug repositioning since they automatically enlarge the technique’s scope and allow exploring the so far ‘unexplored compounds’ from a structural perspective. In general, the transfer of structural information is a promising technique that could be applied to any chemical library, to any compound that has no crystal structure available in PDB, and even to transfer any other feature that may be relevant for the drug discovery process and that due to data limitations is not yet fully available. In that sense, the results of this work document the full potential of structure-based screening even beyond PDB. Graphical Abstract

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3