Consensus holistic virtual screening for drug discovery: a novel machine learning model approach

Author:

Moshawih Said,Bu Zhen Hui,Goh Hui Poh,Kifli Nurolaini,Lee Lam Hong,Goh Khang Wen,Ming Long Chiau

Abstract

AbstractIn drug discovery, virtual screening is crucial for identifying potential hit compounds. This study aims to present a novel pipeline that employs machine learning models that amalgamates various conventional screening methods. A diverse array of protein targets was selected, and their corresponding datasets were subjected to active/decoy distribution analysis prior to scoring using four distinct methods: QSAR, Pharmacophore, docking, and 2D shape similarity, which were ultimately integrated into a single consensus score. The fine-tuned machine learning models were ranked using the novel formula “w_new”, consensus scores were calculated, and an enrichment study was performed for each target. Distinctively, consensus scoring outperformed other methods in specific protein targets such as PPARG and DPP4, achieving AUC values of 0.90 and 0.84, respectively. Remarkably, this approach consistently prioritized compounds with higher experimental PIC50 values compared to all other screening methodologies. Moreover, the models demonstrated a range of moderate to high performance in terms of R2 values during external validation. In conclusion, this novel workflow consistently delivered superior results, emphasizing the significance of a holistic approach in drug discovery, where both quantitative metrics and active enrichment play pivotal roles in identifying the best virtual screening methodology.Scientific contributionWe presented a novel consensus scoring workflow in virtual screening, merging diverse methods for enhanced compound selection. We also introduced ‘w_new’, a groundbreaking metric that intricately refines machine learning model rankings by weighing various model-specific parameters, revolutionizing their efficacy in drug discovery in addition to other domains. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3