AI-driven molecular generation of not-patented pharmaceutical compounds using world open patent data

Author:

Shimizu Yugo,Ohta Masateru,Ishida Shoichi,Terayama Kei,Osawa Masanori,Honma Teruki,Ikeda Kazuyoshi

Abstract

AbstractDeveloping compounds with novel structures is important for the production of new drugs. From an intellectual perspective, confirming the patent status of newly developed compounds is essential, particularly for pharmaceutical companies. The generation of a large number of compounds has been made possible because of the recent advances in artificial intelligence (AI). However, confirming the patent status of these generated molecules has been a challenge because there are no free and easy-to-use tools that can be used to determine the novelty of the generated compounds in terms of patents in a timely manner; additionally, there are no appropriate reference databases for pharmaceutical patents in the world. In this study, two public databases, SureChEMBL and Google Patents Public Datasets, were used to create a reference database of drug-related patented compounds using international patent classification. An exact structure search system was constructed using InChIKey and a relational database system to rapidly search for compounds in the reference database. Because drug-related patented compounds are a good source for generative AI to learn useful chemical structures, they were used as the training data. Furthermore, molecule generation was successfully directed by increasing and decreasing the number of generated patented compounds through incorporation of patent status (i.e., patented or not) into learning. The use of patent status enabled generation of novel molecules with high drug-likeness. The generation using generative AI with patent information would help efficiently propose novel compounds in terms of pharmaceutical patents. Scientific contribution: In this study, a new molecule-generation method that takes into account the patent status of molecules, which has rarely been considered but is an important feature in drug discovery, was developed. The method enables the generation of novel molecules based on pharmaceutical patents with high drug-likeness and will help in the efficient development of effective drug compounds.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Reference39 articles.

1. Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF (2022) Generative models for molecular discovery: recent advances and challenges. WIREs Comput Mol Sci 12:1–17. https://doi.org/10.1002/wcms.1608

2. Walters WP, Murcko M (2020) Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol 38:143–145. https://doi.org/10.1038/s41587-020-0418-2

3. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 2672–2680

4. Prykhodko O, Johansson SV, Kotsias P-C, Arús-Pous J, Bjerrum EJ, Engkvist O, Chen H (2019) A de novo molecular generation method using latent vector based generative adversarial network. J Cheminform 11:74. https://doi.org/10.1186/s13321-019-0397-9

5. Rumelhart DE, McClelland JL, Group PR (1987) Parallel distributed processing, volume 1: explorations in the microstructure of cognition: foundations. MIT press, Cambridge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3