Image sharpening algorithms improve clarity of surgical field during 3D heads-up surgery

Author:

Nakajima Kosuke,Inoue MakotoORCID,Takahashi Aya,Yoshikawa Yuji,Mizuno Masaharu,Koto Takashi,Ishida Tomoka,Oshika Tetsuro

Abstract

Abstract Background Image-sharpening algorithms with color adjustments enable real-time processing of the surgical field with a delay of 4 msec for heads-up surgery using digital three-dimensional displays. The aim of this study was to investigate the usefulness of the algorithms with the Artevo 800® digital microscope. Methods Seven vitreoretinal surgeons evaluated the effects of image-sharpening processing on the clarity of the surgical field with the Artevo 800® system that is used for cataract and vitreous surgeries. The scorings were made on a 10-point scale for anterior capsulotomy, phacoemulsification, cortex aspiration, core vitrectomy, and peeling of an epiretinal membrane or an internal limiting membrane. In addition, the images during the internal limiting membrane peeling were processed with or without color adjustments. We also evaluated the skewness (asymmetry in the distribution of the pixels) and kurtosis (sharpness in the distribution of the pixel) of the images to evaluate the contrast with each intensity of image-sharpening. Results Our results showed that the mean visibility score increased significantly from 4.9 ± 0.5 at 0% (original image) to 6.6 ± 0.5 at 25% intensity of the image-sharpening algorithm (P < 0.01). The visibility scores of the internal limiting membrane increased significantly from 0% (6.8 ± 0.3, no color adjustments) to 50% after the color adjustments (7.4 ± 0.4, P = 0.012). The mean skewness decreased significantly from 0.83 ± 2.02 at 0% (original source) to 0.55 ± 1.36 at 25% intensity of the image-sharpening algorithm (P = 0.01). The mean kurtosis decreased significantly from 0.93 ± 2.14 at 0% (original image) to 0.60 ± 1.44 at 25% intensity of the image-sharpening algorithm (P = 0.02). Conclusions We conclude that the image-sharpening algorithms can improve the clarity of the surgical field during 3D heads-up surgery by decreasing the skewness and kurtosis. Trial registration This was a prospective clinical study performed at a single academic institution, and the procedures used were approved by the Institutional Review Committee of the Kyorin University School of Medicine (reference number, 1904). The procedures also conformed to the tenets of the Declaration of Helsinki.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3