Translating prognostic quantification of c-MYC and BCL2 from tissue microarrays to whole slide images in diffuse large B-cell lymphoma using deep learning

Author:

Tavolara Thomas E.,Niazi M. Khalid Khan,Feldman Andrew L.,Jaye David L.,Flowers Christopher,Cooper Lee A.D.,Gurcan Metin N.

Abstract

Abstract Background c-MYC and BCL2 positivity are important prognostic factors for diffuse large B-cell lymphoma. However, manual quantification is subject to significant intra- and inter-observer variability. We developed an automated method for quantification in whole-slide images of tissue sections where manual quantification requires evaluating large areas of tissue with possibly heterogeneous staining. We train this method using annotations of tumor positivity in smaller tissue microarray cores where expression and staining are more homogeneous and then translate this model to whole-slide images. Methods Our method applies a technique called attention-based multiple instance learning to regress the proportion of c-MYC-positive and BCL2-positive tumor cells from pathologist-scored tissue microarray cores. This technique does not require annotation of individual cell nuclei and is trained instead on core-level annotations of percent tumor positivity. We translate this model to scoring of whole-slide images by tessellating the slide into smaller core-sized tissue regions and calculating an aggregate score. Our method was trained on a public tissue microarray dataset from Stanford and applied to whole-slide images from a geographically diverse multi-center cohort produced by the Lymphoma Epidemiology of Outcomes study. Results In tissue microarrays, the automated method had Pearson correlations of 0.843 and 0.919 with pathologist scores for c-MYC and BCL2, respectively. When utilizing standard clinical thresholds, the sensitivity/specificity of our method was 0.743 / 0.963 for c-MYC and 0.938 / 0.951 for BCL2. For double-expressors, sensitivity and specificity were 0.720 and 0.974. When translated to the external WSI dataset scored by two pathologists, Pearson correlation was 0.753 & 0.883 for c-MYC and 0.749 & 0.765 for BCL2, and sensitivity/specificity was 0.857/0.991 & 0.706/0.930 for c-MYC, 0.856/0.719 & 0.855/0.690 for BCL2, and 0.890/1.00 & 0.598/0.952 for double-expressors. Survival analysis demonstrates that for progression-free survival, model-predicted TMA scores significantly stratify double-expressors and non double-expressors (p = 0.0345), whereas pathologist scores do not (p = 0.128). Conclusions We conclude that proportion of positive stains can be regressed using attention-based multiple instance learning, that these models generalize well to whole slide images, and that our models can provide non-inferior stratification of progression-free survival outcomes.

Funder

National Cancer Institute

National Heart, Lung, and Blood Institute

National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

Reference36 articles.

1. Vrabac D, Smit A, Rojansky R, Natkunam Y, Advani RH, Ng AY, Fernandez-Pol S, Rajpurkar P. DLBCL-Morph: morphological features computed using deep learning for an annotated digital DLBCL image set. Sci Data. 2021;8:1–8.

2. Horvat M, Zadnik V, Južnič Šetina T, Boltežar L, Pahole Goličnik J, Novaković S. Jezeršek Novaković, B. diffuse large B-cell Lymphoma: 10 years’ real-world clinical experience with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisolone. Oncol Lett. 2018;15:3602–9.

3. Li Y, Wang Y, Wang Z, Yi D, Ma S. Racial differences in three major NHL subtypes: descriptive epidemiology. Cancer Epidemiol. 2015;39:8–13.

4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD. The 2016 revision of the World Health Organization classification of lymphoid Neoplasms. Blood the Journal of the American Society of Hematology. 2016;127:2375–90.

5. Li S, Young KH, Medeiros LJ. Diffuse large B-cell Lymphoma. Pathology. 2018;50:74–87.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3