Culture and expansion of murine proximal airway basal stem cells

Author:

Wu Meirong,Zhang Xiaojing,Tu Yanjuan,Cheng Wenzhao,Zeng YimingORCID

Abstract

Abstract Background The stem cell characteristic makes basal cells desirable for ex vivo modeling of airway diseases. However, to date, approaches allowing them extensively in vitro serial expansion and maintaining bona fide stem cell property are still awaiting to be established. This study aims to develop a feeder-free culture system of mouse airway basal stem cells (ABSCs) that sustain their stem cell potential in vitro, providing an experimental basis for further in-depth research and mechanism exploration. Methods We used ROCK inhibitor Y-27632-containing 3T3-CM, MEF-CM, and RbEF-CM to determine the proper feeder-free culture system that could maintain in vitro stem cell morphology of mouse ABSCs. Immunocytofluorescence was used to identify the basal cell markers of obtained cells. Serial propagation was carried out to observe whether the stem cell morphology and basal cell markers could be preserved in this cultivation system. Next, we examined the in vitro expansion and self-renewal ability by evaluating population doubling time and colony-forming efficiency. Moreover, the differentiation potential was detected by an in vitro differentiation culture and a 3D tracheosphere assay. Results When the mouse ABSCs were cultured using 3T3-CM containing ROCK inhibitor Y-27632 in combination with Matrigel-coated culture dishes, they could stably expand and maintain stem cell-like clones. We confirmed that the obtained clones comprised p63/Krt5 double-positive ABSCs. In continuous passage and maintenance culture, we found that it could be subculture to at least 15 passages in vitro, stably maintaining its stem cell morphology, basal cell markers, and in vitro expansion and self-renewal capabilities. Meanwhile, through in vitro differentiation culture and 3D tracheosphere culture, we found that in addition to maintaining self-renewal, mouse ABSCs could differentiate into other airway epithelial cells such as acetylated tubulin (Act-Tub) + ciliated and MUC5AC + mucus-secreting cells. However, they failed to differentiate into alveoli epithelial cells, including alveolar type I and alveolar type II. Conclusion We established an in vitro feeder-free culture system that allows mouse ABSCs to maintain their stem cell characteristics, including self-renewal and airway epithelium differentiation potential, while keeping up in vitro expansion stability.

Funder

National Natural Science Foundation of China

Quanzhou High-level Talents Major Project

Doctoral Miaopu project of the Second Affiliated Hospital of Fujian Medical University

the Startup Fund for Scientific Research of Fujian Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3