The safety and effectiveness of genetically corrected iPSCs derived from β-thalassaemia patients in nonmyeloablative β-thalassaemic mice

Author:

Xian Yexing,Xie Yingjun,Song Bing,Ou Zhanhui,Ouyang Shuming,Xie Yuhuan,Yang Yi,Xiong Zeyu,Li Haoxian,Sun Xiaofang

Abstract

Abstract Background β-Thalassaemia is a clinically common cause of hereditary haemolytic anaemia stemming from mutations in important functional regions of the β-globin gene. The rapid development of gene editing technology and induced pluripotent stem cell (iPSC)-derived haematopoietic stem cell (HSC) transplantation has provided new methods for curing this disease. Methods Genetically corrected β-thalassaemia (homozygous 41/42 deletion) iPSCs that were previously established in our laboratory were induced to differentiate into HSCs, which were transplanted into a mouse model of IVS2–654 β-thalassaemia (B6;129P2-Hbbtm2Unc/J mice) after administration of an appropriate nonmyeloablative conditioning regimen. We also investigated the safety of this method by detecting the incidence of tumour formation in these mice after transplantation. Results The combination of 25 mg/kg busulfan and 50 mg/(kg day) cyclophosphamide is an ideal nonmyeloablative protocol before transplantation. Genetically corrected β-thalassaemic HSCs survived and differentiated in nonmyeloablated thalassaemia mice. No tumour formation was observed in the mice for 10 weeks after transplantation. Conclusion Our study provides evidence that the transplantation of genetically corrected, patient-specific iPSCs could be used to cure genetic diseases, such as β-thalassaemia major.

Funder

the Science and Information Technology of Guangzhou Key Project

the Youth Project by Education of Guangdong Province

the Guangdong Province Science and Technology Project

Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3