Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis

Author:

Liu Chao,Wang Jin,Hu Jie,Fu Bo,Mao Zhi,Zhang Hengda,Cai Guangyan,Chen Xiangmei,Sun XuefengORCID

Abstract

Abstract Introduction Extracellular vesicles (EVs), especially stem cell-derived EVs, have emerged as a potential novel therapy for acute kidney injury (AKI). However, their effects remain incompletely understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EVs on AKI in preclinical rodent models. Methods We searched PubMed, EMBASE, and the Web of Science up to March 2019 to identify studies that reported the treatment effects of EVs in a rodent AKI model. The primary outcome was serum creatinine (Scr) levels. The secondary outcomes were the blood urea nitrogen (BUN) levels, renal injury score, percentage of apoptotic cells, and interleukin (IL)-10 and tumour necrosis factor (TNF)-α levels. Two authors independently screened articles based on the inclusion and exclusion criteria. The meta-analysis was conducted using RevMan 5.3 and R software. Results Thirty-one studies (n = 552) satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of Scr (SMD = − 3.71; 95% CI = − 4.32, − 3.10; P < 0.01), BUN (SMD = − 3.68; 95% CI = − 4.42, − 2.94; P < 0.01), and TNF-α (SMD = − 2.65; 95% CI = − 4.98, − 0.32; P < 0.01); the percentage of apoptotic cells (SMD = − 6.25; 95% CI = − 8.10, − 4.39; P < 0.01); and the injury score (SMD = − 3.90; 95% CI = − 5.26, − 2.53; P < 0.01) were significantly decreased in the EV group, and the level of IL-10 (SMD = 2.10; 95% CI = 1.18, 3.02; P < 0.01) was significantly increased. Meanwhile, no significant difference was found between stem cell-derived EVs and stem cells. Conclusion The present meta-analysis confirmed that EV therapy could improve renal function and the inflammatory response status and reduce cell apoptosis in a preclinical rodent AKI model. This provides important clues for human clinical trials on EVs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3