Optimization of differential filtration-based mitochondrial isolation for mitochondrial transplant to cerebral organoids

Author:

Bodenstein David F.,Powlowski Pavel,Zachos Kassandra A.,El Soufi El Sabbagh Dana,Jeong Hyunjin,Attisano Liliana,Edgar Landon,Wallace Douglas C.,Andreazza Ana CristinaORCID

Abstract

Abstract Background Mitochondrial dysfunction is involved in several diseases ranging from genetic mitochondrial disorders to chronic metabolic diseases. An emerging approach to potentially treat mitochondrial dysfunction is the transplantation of autologous live mitochondria to promote cell regeneration. We tested the differential filtration-based mitochondrial isolation protocol established by the McCully laboratory for use in cellular models but found whole cell contaminants in the mitochondrial isolate. Methods Therefore, we explored alternative types of 5-μm filters (filters A and B) for isolation of mitochondria from multiple cell lines including HEK293 cells and induced pluripotent stem cells (iPSCs). MitoTracker™ staining combined with flow cytometry was used to quantify the concentration of viable mitochondria. A proof-of-principle mitochondrial transplant was performed using mitoDsRed2-tagged mitochondria into a H9-derived cerebral organoid. Results We found that filter B provided the highest quality mitochondria as compared to the 5-μm filter used in the original protocol. Using this method, mitochondria were also successfully isolated from induced pluripotent stem cells. To test for viability, mitoDsRed2-tagged mitochondria were isolated and transplanted into H9-derived cerebral organoids and observed that mitochondria were engulfed as indicated by immunofluorescent co-localization of TOMM20 and MAP2. Conclusions Thus, use of filter B in a differential filtration approach is ideal for isolating pure and viable mitochondria from cells, allowing us to begin evaluating long-term integration and safety of mitochondrial transplant using cellular sources.

Funder

New Frontiers in Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3