Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation

Author:

Muñoz Juan J. A. M.,Dariolli Rafael,da Silva Caio Mateus,Neri Elida A.,Valadão Iuri C.,Turaça Lauro Thiago,Lima Vanessa M.,de Carvalho Mariana Lombardi Peres,Velho Mariliza R.,Sobie Eric A.,Krieger Jose E.

Abstract

Abstract Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling. Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation. Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3