Disclosing the molecular profile of the human amniotic mesenchymal stromal cell secretome by filter-aided sample preparation proteomic characterization

Author:

Muntiu Alexandra,Papait Andrea,Vincenzoni Federica,Vitali Alberto,Lattanzi Wanda,Romele Pietro,Cargnoni Anna,Silini Antonietta,Parolini Ornella,Desiderio ClaudiaORCID

Abstract

Abstract Background The secretome of mesenchymal stromal cells isolated from the amniotic membrane (hAMSCs) has been extensively studied for its in vitro immunomodulatory activity as well as for the treatment of several preclinical models of immune-related disorders. The bioactive molecules within the hAMSCs secretome are capable of modulating the immune response and thus contribute to stimulating regenerative processes. At present, only a few studies have attempted to define the composition of the secretome, and several approaches, including multi-omics, are underway in an attempt to precisely define its composition and possibly identify key factors responsible for the therapeutic effect. Methods In this study, we characterized the protein composition of the hAMSCs secretome by a filter-aided sample preparation (FASP) digestion and liquid chromatography-high resolution mass spectrometry (LC–MS) approach. Data were processed for gene ontology classification and functional protein interaction analysis by bioinformatics tools. Results Proteomic analysis of the hAMSCs secretome resulted in the identification of 1521 total proteins, including 662 unique elements. A number of 157 elements, corresponding to 23.7%, were found as repeatedly characterizing the hAMSCs secretome, and those that resulted as significantly over-represented were involved in immunomodulation, hemostasis, development and remodeling of the extracellular matrix molecular pathways. Conclusions Overall, our characterization enriches the landscape of hAMSCs with new information that could enable a better understanding of the mechanisms of action underlying the therapeutic efficacy of the hAMSCs secretome while also providing a basis for its therapeutic translation.

Funder

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Reference90 articles.

1. Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS ONE. 2012;7: e46956.

2. Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol. 2020;8: 610544.

3. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015;11:394–407.

4. Silini AR, Papait A, Cargnoni A, Vertua E, Romele P, Bonassi Signoroni P, Magatti M, De Munari S, Masserdotti A, Pasotti A, Rota Nodari S, Pagani G, Bignardi M, Parolini O. CM from intact hAM: an easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Res Ther. 2021;12:540.

5. Papait A, Vertua E, Magatti M, Ceccariglia S, De Munari S, Silini AR, Sheleg M, Ofir R, Parolini O. Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells. 2020;9:127.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3