Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemia-reperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress

Author:

Zhong Liang,Yang Mengbo,Zou Xiangyu,Du Tao,Xu Huiming,Sun Jie

Abstract

Abstract Background This study was designed to determine the effect of human umbilical cord multipotent mesenchymal stromal cells (hUC-MSC) on acute ischemia/reperfusion (I/R) injury of spermatogenic cells. Method The testicular I/R rat model was established through 720° torsion for 1 h. hUC-MSC were intravenously injected 10 min before detorsion. Injury severity of spermatogenic cells was estimated by Johnsen’s score. The proliferating of recipient spermatogonia was measured by the immunostaining of antibodies against Ki67, and all germ cells were detected with DDX4 antibody. And recipient spermatogenesis was assessed by staining spermatozoa with lectin PNA. The levels of inflammatory factors were measured by real-time PCR. And the Selectin-E expression, neutrophil infiltration in the testes was detected by immunostaining. Germ cells apoptosis was tested by TUNEL assay and western blot. Furthermore, the oxidative stress was tested by reactive oxidative species (ROS) levels. In vitro, the condition medium (CM) of hUC-MSC was used to culture human umbilical vein endothelial cells (HUVECs), so as to assess the paracrine effect of hUC-MSC on HUVECs. The protein chip was used to measure the relative concentration of the secretory proteins in the CM of hUC-MSC. Result hUC-MSC greatly alleviated the testicular injury induced by testis I/R. The levels of proinflammatory factors were downregulated by hUC-MSC in vivo and in vitro. Neutrophil infiltration, ROS, and germ cell apoptosis in testicular tissues were greatly reduced in the group of hUC-MSC. Paracrine factors secreted by hUC-MSC including growth factors, cytokines, and anti-inflammatory cytokine were rich. Conclusion This study demonstrated that intravenously injected hUC-MSC could protect the spermatogenic cells against I/R injury by reducing the inflammatory response, apoptosis, and acute oxidative injury. Paracrine mechanism of hUC-MSC may contribute to the protection of spermatogenic cells against I/R injury. Therefore, the present study provides a method for clinical treatment of attenuate I/R injury of spermatogenic cells.

Funder

Major Research Plan

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3