Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice

Author:

Ouyang LongORCID,Qiu Daojing,Fu Xin,Wu Aiping,Yang Pengyuan,Yang Zhigang,Wang Qian,Yan Li,Xiao Ran

Abstract

Abstract Background In diabetes, delayed wound healing was considered as the result of excessive recruitment and retention of pro-inflammatory cells and factors. Hematopoietic prostaglandin D synthase (HPGDS) was identified from differently expressed genes of diabetic human foot skin. HPGDS is responsible for the production of prostaglandin D2 (PGD2), an inflammatory mediator. Therefore, we aim to explore whether HPGDS could be a therapeutic target in the diabetic wound (DW). Method In this study, we compared gene expression profilings of diabetic human foot skin and non-diabetic human foot skin from the Gene Expression Omnibus database. We detected the characteristics of immune components in diabetic mice wound and investigated the role and underlying mechanism of the differently expressed Hpgds for the diabetic wound healing. For in vivo studies, we engineered ADSC to overexpress Hpgds (ADSCHpgds) and evaluated its effects on diabetic wound healing using a full-thickness skin wound model. For in vitro studies, we evaluated the role of ADSCHpgds conditioned medium and PGD2 on Lipopolysaccharide (LPS) induced macrophage. Results Hpgds was significantly down-regulated in type 2 diabetic mice wound and its deficiency delayed normal wound healing. ADSCHpgds accelerated DW healing by reducing neutrophil and CD8T cell recruitment, promoting M2 macrophage polarization and increasing the production of growth factors. ADSCHpgds conditioned medium showed superior capability in promoting M2 macrophage transition than conditioned medium derived from ADSC alone. Conclusion Our results demonstrated that Hpgds is required for wound healing, and ADSCHpgds could accelerate DW healing by improving anti-inflammatory state and normalizing the proliferation phase of wound healing in mice. These findings provide a new insight in the therapeutic strategy of diabetic wound.

Funder

Chinese Academy of Medical Sciences Initiative for Innovative Medicine

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3