Maintenance of adult stem cells from human minor salivary glands via the Wnt signaling pathway

Author:

Kang Bo kyoung,Zhu Zhu,Wang Jian,Zhou Jia,Yu Shun,Zhou Xianyu,Zhao Zhenmin,Xie Aiguo,Lu LinORCID,Yang Jun

Abstract

Abstract Background Xerostomia is a salivary gland dysfunction that negatively impacts the life quality of patients; however, there is no effective treatment for xerostomia. Bioengineered organs, generated using stem cells obtained from newborn salivary glands and ligated injury models, are a new organ transplantation strategy that could be feasible for xerostomia treatment. Reconstruction of salivary gland organoids by seed cells obtained from human minor salivary glands will offer theoretical fundaments and technology support for clinical application and organ regeneration research. Herein, we aimed to propose a new method for culturing and enriching adult human minor salivary gland stem cells in vitro in a three-dimensional (3D) environment via Wnt signaling activation. Methods Obtained and characterized human minor salivary gland stem cells (hMSGSCs) with self-organization ability were 3D-cultured to generate organoids. We examined hMSGSCs proliferation and colony formation using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Telomerase reverse transcriptase staining, flow cytometry, immunofluorescence assay, RNA isolation, RT-PCR, and qPCR were performed to assess hMSGSCs structure and the function of reconstructive organoids in vitro. Results hMSGSCs showed typical epithelial-like characteristics, such as positive for CD49f and cell KRT expression. hMSGSCs served as adult stem cells in salivary glands and could differentiate into acinar and duct cells. Upon the addition of Noggin, CHIR99021, and Wnt3A to the 3D culture system, hMSGSCs showed higher LGR5 expression and decreased AMY1B and MUC5B expression. Therefore, the Wnt and bone morphogenetic protein (BMP) pathways are important in regulating hMSGSCs self-organization and differentiation. Conclusions We showed that the stem cell properties of hMSGSCs in a 3D culture system can be maintained by activating the Wnt signaling pathway and inhibiting the BMP signaling pathway. Our findings contribute new insights on salivary gland organoid generation in vitro.

Funder

National Natural Science Foundation of China

national natural science youth foundation of China

Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3