Hypoimmunogenic human pluripotent stem cells are valid cell sources for cell therapeutics with normal self-renewal and multilineage differentiation capacity

Author:

Chen Yifan,Zhou Yanjie,Zhou Zhongshu,Fang Yujiang,Ma Lin,Zhang XiaoqingORCID,Xiong Jie,Liu Ling

Abstract

AbstractHypoimmunogenic human pluripotent stem cells (hPSCs) are expected to serve as an unlimited cell source for generating universally compatible “off-the-shelf” cell grafts. However, whether the engineered hypoimmunogenic hPSCs still preserve their advantages of unlimited self-renewal and multilineage differentiation to yield functional tissue cells remains unclear. Here, we systematically studied the self-renewal and differentiation potency of three types of hypoimmunogenic hPSCs, established through the biallelic lesion of B2M gene to remove all surface expression of classical and nonclassical HLA class I molecules (B2Mnull), biallelic homologous recombination of nonclassical HLA-G1 to the B2M loci to knockout B2M while expressing membrane-bound β2m-HLA-G1 fusion proteins (B2MmHLAG), and ectopic expression of soluble and secreted β2m-HLA-G5 fusion proteins in B2MmHLAG hPSCs (B2Mm/sHLAG) in the most widely used WA09 human embryonic stem cells. Our results showed that hypoimmunogenic hPSCs with variable expression patterns of HLA molecules and immune compromising spectrums retained their normal self-renewal capacity and three-germ-layer differentiation potency. More importantly, as exemplified by neurons, cardiomyocytes and hepatocytes, hypoimmunogenic hPSC-derived tissue cells were fully functional as of their morphology, electrophysiological properties, macromolecule transportation and metabolic regulation. Our findings thus indicate that engineered hypoimmunogenic hPSCs hold great promise of serving as an unlimited universal cell source for cell therapeutics.

Funder

Major Program of Development Fund for Shanghai Zhangjiang National Innovation Demonstration Zone

Science and Technology Commission of Shanghai Municipality

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3